
RGS /August 1986

Knowledge-Intensive
Development Environments

Reid G. Smith

KNOWLEDGE ACQUISITION IS THE
OMNIPRESENT PROBLEM1

The problem is moving real-world knowledge into a
software system—by whatever means—and making it
work. It extends over the complete lifetime of a
system—during initial design, continuing extension
of the knowledge base, integration with other
systems, and application to new problems.

We have two main ways to impact the knowledge
acquisition bottleneck:

➭ Knowledge-Intensive Development Environments

 Learning Apprentice Systems

Adherence to a set of architectural principles of
knowledge-based system design simplifies the task
of knowledge acquisition and reuse.

1 Slides from: Reid. G. Smith. Knowledge-Intensive Development Environments. Presented at the Fifth
National Conference on Artificial Intelligence (AAAI-86) Panel on Directions for Expert Systems, August
14, 1986, Philadelphia, PA. (Panelists: Janice S. Aikins (Chair), Frederick Hayes-Roth, John P.
McDermott, Herbert Schorr, Reid G. Smith).

http://www.rgsmithassociates.com/About.htm

RGS /August 1986

KNOWLEDGE-INTENSIVE
DEVELOPMENT ENVIRONMENTS

Representation Substrate (e.g., object-oriented)

 Integration of Objects, Procedures, Rules,
 Constraints, Dependencies,
 Contexts, Explanation, …

 Knowledge of Use of Components,
 Problem-Solving Methods,
 Generic Domains, …

Interaction Substrate

 Clients: Developer/Maintainer
 Domain Specialist
 End User

The needs of all client types can be met with a single
extensible substrate

RGS /August 1986

User Interfaces ➭ Knowledge-Based Systems

During the incremental refinement process that
typifies KBS development, high quality user
interfaces are essential.

 • Expression and Interaction in Domain Terms
 • Direct Interaction by Domain Specialist
 • Focus of Knowledge Engineer and Domain

Specialist on Domain Knowledge and
Problem-Solving Methodology

 • Explanation and Debugging
 • Interactive Graphics

RGS /August 1986

RGS /August 1986

RGS /August 1986

RGS /August 1986

Knowledge-Based Systems ➭ User Interfaces

More than 50% of KBS code may support the user
interface. If a KBS toolkit serves only to build the
representation & inference parts of an application, a
sizeable problem remains for developers.

The user interface is often the critical module. It is
what people see—end users and domain specialists
alike. It provides the data from which users form
mental models of how the overall system operates,
and hypotheses about its behavior in new situations.

The representation substrate already contains tools
well-suited to user interface design.

 • Object-Oriented Encoding of Interface Constructs
 • Interpretation of Knowledge Base to Specialize

Views and Interaction Methods
 • Constraints to Maintain Consistency
 • Rules to Infer Missing or Dependent Information

RGS /August 1986

Slogan

The Form IISS The Content

The Form IISS The Content
∧

a very important part of

RGS /August 1986

The following slides were not used.

KNOWLEDGE BASED SYSTEM
ARCHITECTURAL PRINCIPLES

Separate the Inference Engine and Knowledge Base

Keep the Inference Engine Simple/Understandable

Orchestrate Multiple Representations

Design around a Clear, Expressive Domain Model

Partition Knowledge Wherever Possible

Represent Problem Solving/Control Explicitly

Avoid Assumptions about Context of Use

Design for Explanation

Consider User Interaction as an Integrated

Component

Exploit Redundancy

RGS /August 1986

KNOWLEDGE BASED SYSTEM
ARCHITECTURAL PRINCIPLES

Separate the Inference Engine and Knowledge Base

Keep the Inference Engine Simple

Orchestrate Multiple Representations
 • Objects, Rules, Constraints, Procedures … Messages
 • Uniformity Simplifies Task of Inference Engine Design

Design around a Clear, Expressive Domain Model
 • Static Concept Knowledge … Abstract Relationships
 • Dynamic Action Knowledge (Tasks)
 … Linked to Static Knowledge
 • Structure Readily Understandable by Domain Specialists

Partition Knowledge Wherever Possible
 • By Domain [Geology, Problem Solving/Control, Interaction]
 • By Task

Represent Problem Solving/Control Explicitly
 • Strategy Knowledge & Problem-Solving State

Avoid Assumptions about Context of Use
 • Problems Change Over Time
 • Knowledge Is Applied in New Contexts & Different Systems

Design for Explanation
 … For End Users, Domain Specialists, and Programs

Consider User Interaction as an Integrated

Component

Exploit Redundancy

