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EXTENDED ABSTRACT 
 
First generation knowledge-based systems (KBSs) typically used a single representational 
paradigm–such as production rules–to meet all requirements. More ambitious goals have led 
largely to the abandonment of this simple model. These goals include: (i) construction of 
systems that encapsulate more aspects of human expert behavior; and (ii) reduction in the 
cost of system construction and maintenance; and (iii) improvement of time/space 
performance. As a result, current systems tend to use multiple representations–such as 
objects, rules, constraints, tasks, and procedures–each tuned to handle specialized classes of 
information and situations. A number of designers have found it advantageous to integrate the 
different paradigms via an object-oriented foundation, or substrate.  
 
To understand the utility of an object-oriented substrate, we consider the process of KBS 
development. In current practice the transfer of expertise from a domain specialist to a 
knowledge-based system involves a computer scientist intermediary–or knowledge engineer. 
The specialist and the engineer discuss the domain in a series of interactions. During each 
interaction, the engineer gathers some understanding of a portion of the specialist's 
knowledge, encodes it in the evolving system, discusses the encoding and the results of its 
application with the specialist, and refines the encoded knowledge. The process is a 
painstaking one–expensive and tedious. As a result, one of the foremost problems that has 
been identified for KBSs is the knowledge acquisition bottleneck. 
 
For our purposes, we can observe that two sorts of software tools and methods are crucial to a 
smooth KBS development scenario: (i) those that simplify the process of incremental system 
refinement; and (ii) those that allow the domain specialist to interact directly to some extent 
with the evolving system in order to: examine the knowledge base for gaps, weaknesses, and 
misunderstandings; and expand, refine, and correct the encoded knowledge. Such tools have 
the potential to increase the bandwidth of the interaction between domain specialist, 
knowledge engineer, and system by allowing attention to be focused on the required domain 
knowledge and problem-solving methodology–without being bogged down in programming 
mechanics. 
 
Object-oriented programming provides powerful assistance for the KBS developer. It has been 
found to be an effective aid to the exploratory programming style that characterizes the 
incremental refinement process of KBS development. One of the primary problems facing the 
KBS developer is management of complexity in a dynamic environment. This is increasingly 
true as KBSs are scaled-up to meet the demands of real-world problems. A powerful aid to 
managing complexity is a clear conceptual model of the evolving system–a kind of 
computational skeleton. In constructing a clear model, it is helpful to organize computation 
around programming constructs whose internal structure and interrelationships explicitly reflect 
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those of constructs in the physical world in which the resultant systems are to operate. It is in 
constructing such models that the object-oriented style excels. Furthermore, the object-
oriented style encourages modular code with well-defined interfaces through its use of 
messages as an invocation form. Inheritance of properties simplifies code-sharing. This leads 
to more space-efficient code and to ease of maintenance and alteration. In addition–and of 
primary importance–the use of messages allows many traditional KBS representational 
paradigms (e.g., rules, constraints) to be encoded as objects and invoked (via messages) in a 
uniform manner.  
 
A clear model of the evolving system is as important to the domain specialist as it is to the KBS 
developer. Objects appear to be a natural and understandable knowledge organizing 
mechanism to humans not normally involved in computation. The concept of a prototype for 
encapsulating information–both data and procedures–is well-understood and used by humans, 
as are the concepts of classes and instances, taxonomies–and taxonomic inheritance of 
properties (along with a number of other forms of inheritance). In addition, a number of 
powerful systems have been developed for easy graphical examination and extension of 
knowledge bases. A keynote to these systems is that the domain specialist is able to express 
himself and interact in the natural terms and notation of his domain. 
 
In the first part of the presentation, we review our experience with an example of an integrated 
knowledge-based system development environment based on an object-oriented substrate 
and demonstrate the advantages of the approach. 
 
We have been discussing the utility of an object-oriented substrate for reducing the knowledge 
acquisition bottleneck by increasing the bandwidth of interactions between domain specialist, 
knowledge engineer, and knowledge-based system. There are two intended effects: (i) a 
reduction in the time/cost required for KBS construction and maintenance; and (ii) an increase 
in the robustness and power of the resultant systems. There is a third potential payoff that 
might accrue from the use of objects as a representational substrate. We are searching for a 
representational substrate that will allow knowledge to be encoded in such a way as to permit 
knowledge bases developed in the context of one application to be used almost as is in related 
applications in the same domain. Indeed some aspects of the encoded knowledge bases 
should be usable across domains. In the short term, this would enable amortization of the cost 
of knowledge acquisition. In the longer term, it could lead to knowledge-sharing between 
specialists–a kind of computational publication. Unlike the knowledge involved in traditional 
journal publication, however, this knowledge will be computationally described, directly usable 
knowledge. Such a development could have enormous implications and could vastly increase 
the leverage of an individual domain specialist. It could greatly shorten the time delays 
currently involved in making a new development the widely used standard practice. 
 
In order to obtain the desired effect, we believe that architectural principles of knowledge-
based system design must emerge. The current practice in the field will not lead to the 
advantages we seek regarding robustness, power, and cost of construction and maintenance. 
Below, we list some candidate principles. 
 
• A clear, expressive domain model is central.  
• It is desirable to encode knowledge through abstract relations that are usable across 

domains (e.g., part/whole, generalization/specialization, task/subtask).  
• Knowledge should be partitioned wherever possible (e.g., into domain-independent, 

domain-specific, and task-specific packets). 
• Assumptions about the context in which knowledge will be used should be minimized.  
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• Control should be explicitly represented (i.e., strategy knowledge, problem-solving state, 
and problem-solving history). 

• Specialized representations are essential (e.g., objects, rules, constraints, tasks, 
procedures) for high performance. They must be integrated. 

• User interaction should be considered as an integrated component. 
 
In the second part of the presentation, we discuss these principles and the utility of object-
oriented programming in following them. 
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Themes 
 
 
• State of the art knowledge-based systems 

orchestrate multiple representational paradigms 
 
• An object-oriented substrate offers useful tools 

for integration of the different paradigms 
 

________________________________ 
 

• Architectural principles of knowledge-based 
systems are emerging 

 
• An object-oriented substrate helps developers 

follow the principles 
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Impacting 
the 

Knowledge Acquisition Bottleneck 
 

 
➭ KNOWLEDGE ENGINEERING TOOLS 

 
• Assist the Knowledge Engineer and Domain 

Specialist to Focus on the Domain Knowledge 
and Problem-Solving Methodology  

 
• Simplify the Incremental Refinement Process 

 
• Allow Direct Interaction by the Domain  

Specialist 
 
 … Expression and Interaction in Domain Terms 
 
• Amortize KB Construction Cost via Knowledge 

Sharing 
 
 … Architectural Principles 
 
 
 MACHINE LEARNING TECHNIQUES 
 
 • Learning Apprentice Systems 
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Structured Object Representation 
 

 
• Modularity: Encapsulation of Properties and 

 Behavior 
 

• Specialized Procedure Invocation via Messages 
 

• Abstraction: Taxonomic Hierarchies… 
• Inheritance of Properties 

 
• Event-Driven Procedure Invocation 

 
 
 … Useful for Managing Complexity 
 
 

• Prototypes: a Natural and Understandable  
  Knowledge Organizing Mechanism 

 
• Computational Skeleton: Structure for the  

 Reasoning System 
 
• Messages: a Universal Invocation Mechanism 
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Hearsay II 
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Strobe Datatypes 
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Strobe 
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Strobe Summary 
 
 

• Knowledge Bases, Objects, Slots, Facets 

• Tangled Taxonomic Hierarchies 
• Class/Instance Distinction 
• Flexible Slot/Facet Inheritance with Caching 

• Procedural Attachment: Invocation via Message 
• Datatype Forwarding 

• Event-Driven Procedure Invocation 
• Object/Slot Creation/Deletion 
• Slot Value Access/Alteration [before/after] 

• Groups: Arbitrary Object Collections 

• Multiple Resident Knowledge Bases 

• Multiple Machine/Language Operation 

• Object/Slot Synonyms 

• Description Object Instantiation 
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Individual Rule Object 

Object: NormalFault9 
Generalizations: Rule 

If: (Condition1 Condition2) 
Then: (Action1 Action2) 
Condition1: (ThereExists z NormalFaultZone) 
Condition2: (ThereExists p RedPattern 

($< p.Length RedLength) 
($Above p z) 
($Perpendicular p.Azimuth z.Strike)) 

Action1: ($Specialize z 'LateFaultZone) 
Action2: ($Assign 'DirectionToDownthrownBlock z 

p.Azimuth) 
Translation: 

If 
1. there exists an instance of the class 

NormalFaultZone (z), and 
2. there exists an instance of the class RedPattern (p) 

such that the Length of p < RedLength, and 
such that p is above z, and 
such that the Azimuth of p is perpendicular to the 

Strike of z 
Then 

1. specialize z to be a LateFaultZone 
2. the DirectionToDownthrownBlock of z 

← the Azimuth of p 
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Individual Rule Object 

Object: Tidal1 
Generalizations: Rule 

… 
Translation: 

If 
1. there exists a Transition/InnerShelfZone (z) 

such that the influence of z is Wave/Tide, and 
2. there exists a set of BluePatterns (p) 

such that each new element of p is within z, and 
such that each new element of p is below the last 

element of p, and 
such that the Azimuth of each new element of p is 

opposite to the Azimuth the last element of p, and 
such that the size of the set p > 1 

Then 
1. create a TidalFlatZone (tz) 
2. the Top of tz ← the Depth of the first element of p 
3. the Bottom of tz ← the Depth of the last element of p 
4. the Axis of tz ← the Azimuth of the last element of p 
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Rule Class Object 

Object: Rule  
Generalizations: Object 

If: 
Then: 
Ruleset: 
Translation: 
Apply: ApplyRule 
Match: MatchRule 
MatchAll: MatchRuleAll 
Execute: ExecuteRule 
Translate: TranslateRule 
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Individual Ruleset Object 

Object: DeepMarineRuleset 
Generalizations: Ruleset 

NormalRules: Marine-20 Marine-21 Marine-22 
ControlStrategy: ReStartAfterFiring 
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Ruleset Class Object 

Object: Ruleset 
Generalizations: Object 

NormalRules: 
FireOnceRules: 
FireAlwaysRules: 
ControlStrategy: 
Termination Condition: 
KnowledgeBase: 
Apply: ApplyRuleset 
ApplylnProcess: ApplyRulesetlnProcess 
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Constrained Object 
 

Object: WellLocation 
Type: Class 
Generalizations: Object 

 
Well: 
TOWN: {Township} 
STAT: {State Province} 
NATI: {Nation Country} 
CONT: {Continent} 

Value: 
Datatype: Expr 
Candidates: (Europe North-America South-America 

Asia Africa Australia) 
Constraints: (MembershipConstraint) 
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Single Slot Constraint Object 
 

Object: MembershipConstraint 
Generalizations: SingleSlotConstraint 

 
If {Condition}: (Condition1 ) 
Then {Correction}: (Action1 ) 
Condition1: (NOT (MEMBER Value Candidates)) 
Action1: (ERROR Value "is not one of:" Candidates) 
 
SetOrElementConstraint: Element 
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Datatype Object for Integrity 
 

Object: Datatype 
Generalizations: Root 

Datum-Get: StandardGetHandler 
…  
Datum-Put: IntegrityPutHandler 
Datum-Add: IntegrityAddHandler 
Datum-Remove: IntegrityRemoveHandler 
…  

21 RGS/September 1985 



 

Impulse: An Extensible and Interactive 
 Knowledge Base Editor 

• Reactive Environment 

• Customized Presentation and Interaction 

• Flexible Display of Knowledge Base 
 Structure 
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MODULAR INCREMENTS TO STROBE 

• Impulse 
- Strobe-based KB editor 
- Customizable 

• Rule Interpreter 
- Rule Debugging Package 
- Rule Editor (Impulse-based) 

• Constraint Package 
- Semantic Integrity Management within and 

among objects 

• Object File Management (KBMS) 
- Indexed non-resident object files 

• Declarative Task Representation 
- Control and data flow among modules 
- User-interface information 
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SUBSTRATES 
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KBS Architectural Principles 
(Davis, 1982) 

 
Separate the Inference Engine and Knowledge Base 

• What Is True vs How to Use It 
 
Use as Uniform a Representation as Possible 

• Specialization Is Often Worth the Cost of Translation 
 
Keep the Inference Engine Simple 
 
Exploit Redundancy 

29 RGS/September 1985 



 

KBS Architectural Principles 
 
 
A Clear, Expressive Domain Model is Central 
 • Objects 
 • Abstract Relations 
 
Partition Knowledge Wherever Possible 
 • Domain-Independent Knowledge 
 • Domain-Specific Knowledge 
 • Task-Specific Knowledge 
 
Avoid Assumptions about Context of Use 
 
Represent Control Explicitly 
 • Strategy Knowledge 
 • Problem-Solving State 
 
Orchestrate Multiple Representations 
 • Objects, Rules, Procedures 
 • Invocation via Message 
 
Consider User Interaction as an Integrated 

Component 
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Encoding Abstract Relations 
 

 
• Generalization 
  Specialization 
  Subsumption 
 
• Class Membership  
 
• SuperPart Task Abstraction 
  Part  Subtask  Expansion 
    Port … 
 
• Cause 
  Effect 
  Manifestation 
 
• Suggests  
 
• Precondition 
  Postcondition 
 
• Ordering … 
 
• Attribute (obligatory, optional, …) 
  (necessary, sufficient, …) 
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Control Rule 
 
 

Create tasks to determine any unknown attributes of the 
focus of the current task (one task per attribute). 

 
If 

There exists an Attribute (:att) of the Focus (:f) 
of the Current Task 

such that the :att of :f is unknown, and 
such that there are Detectors (:dtr) of :att of :f 

Then 
Create a Sibling Task (:st) of the Current Task 

To Detect :att of :f using :dtr 
Append [Rules ReElaborate Apply] to the 

SuccessfullnvocationProcessors of :sbt 
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Abstraction Example 
(Szolovits & Clancey, 1985) 

 
 
If Mary has a fever, 
then Mary has an infection. 
 
Mary is a patient 
 
If the patient has a fever, 
then the patient has an infection. 
 
Fever is a symptom.  Infection is a disease. 
Fever is a symptom of infection. 
 
If the patient has a symptom of a disease, 
then the patient has the disease. 
 
A symptom is a feature.  A disease is a class. 
 
If there is evidence for a feature of a class, 
then there is evidence for the class. 
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Interpretation Rule 
 
 

Recognize the existence of a CrevasseSplay. 
 
 
If 

There exists a RockUnit (:ru) in the Current Context 
such that the DepositionalEnvironment (:de) of :ru 

is a descendant of CrevasseFan, and 
There exists an element of the Patterns (:bp) of :ru 

such that :bp is an instance of BluePattern, and 
such that at least 0.8 of :bp is within :ru, and 

There does not exist a co-constituent of :ru (:ru2) 
such that the DepositionalEnvironment of :ru2 

is a descendant of ChannelLag, and 
such that :ru2 is below :ru 

 
Then 

Alter :de of :ru to be CrevasseSplay 
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Interpretation Rule 
 
 

Recognize the existence of a CrevasseSplay. 
 
 
If 

There exists a RockUnit (:ru) in the Current Context 
such that the DepositionalEnvironment (:de) of :ru 

is a descendant of CrevasseFan, and 
There exists an element of the SedimentaryFeatures  

(:cb) of :ru 
such that :sf is an instance of CurrentBedding, and 
such that at least 0.8 of :cb is within :ru, and 

There does not exist a co-constituent of :ru (:ru2) 
such that the DepositionalEnvironment of :ru2 

is a descendant of ChannelLag, and 
such that :ru2 is below :ru 

 
Then 

Alter :de of :ru to be CrevasseSplay 
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Examples: 
 
 

IF the hypothesis being focused upon has 
a child that has not been pursued 

THEN pursue that child 
 
IF there is a datum that can be requested 

that is a characterizing feature of the 
recent finding that is currently being 
considered 

THEN find out about the datum 
 
IF the desired finding is a subtype of a 

class of findings, and 
the class of findings is not present  
in this case 

THEN conclude that the desired finding 
is not present 
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Control Rule 
 
 

Create tasks to elaborate the attribute values of the focus 
of the current task (one task per attribute value). 
 
 
If 

There exists a local Attribute (:att) of the Focus (:f)  
of the Current Task 

such that :att is known and elaborable 
Then 

Create an Offspring Task (:ost) of the Current Task 
To Elaborate :att using [Rules ReElaborate Apply] 

Append [Rules DeActivate Apply] to the 
SuccessfullnvocationProcessors of :ost 
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Control Rule 
 
 

Create a task to refine the focus of the current task. 
 
 
If 

There does not exist a Sibling Task (:tsk) of 
the Current Task 

such that the Task of :tsk = Refine, and 
There exists a Focus (:f) of the Current Task  

such that the Refiners (:r) of :f are known 
Then 

Create a Sibling Task (:sbt) of the Current Task 
To Refine :f using :r 

Append [Rules ReEstablishRefine Apply] to the 
SuccessfullnvocationProcessors of :sbt 
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Interpretation Rule 
 
 

Establish the existence of any Energylndications. 
 
 
If 

There exists a RockUnit (:ru) in the Current Context 
such that the Energyindications of :ru are unknown, 
such that the Well (:wI) of :ru is known, 
such that the LogData (:Id) of :wI is known, 
such that Message to 

[Detectors, Energylndicators, Detect] (:en)  
is successful 

Then 
Assign Energylndications of :ru to be :en 
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Advantages: 

• Transparency 

• Explainability 

• Maintainability and Extensibility 

• Simplified Addition of New Facts and Relations 

• Increased Robustness 

• Storage 

• Reusability of KBs in Related Domains 

• Lower Cost of Construction 

• Freedom to Select Optimal Representation For 
 Special Cases 
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